SOBOLEV SPACES ARISING FROM A GENERALIZED SPHERICAL FOURIER TRANSFORM

نویسندگان

چکیده

In this paper, we define Sobolev spaces on a locally compact unimodular group in link with the spherical Fourier transform of type $\delta$. Properties these are obtained. Analogues embedding theorems proved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Haar – Fourier Transform

We give a new generalization for Haar functions. The generalization starts from the Walsh-like functions and based on the connection between the original Walsh and Haar systems. We generalize the Haar– Fourier Transform too.

متن کامل

A Presentation of Sobolev Spaces by Means of the Fourier Transform

In this project, we use finite-difference to solve the Dirichlet and Poisson problem. Discrete version of the maximum principle is displayed to show the uniqueness and existence of the discrete solution. Then an example is given to interpret different convergence speed under different numerial schemes. Finally, we demonstrate that the discrete solution converges to the desired solution under ap...

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM

In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.

متن کامل

Orbit Spaces Arising from Isometric Actions on Hyperbolic Spaces

Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology.  Dimension of is called the cohomogeneity of the action of  on . If is a differentiable manifold  of  cohomogeneity one under the action of  a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...

متن کامل

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.37418/amsj.10.7.3